11 research outputs found

    Design of a wearable upper limb rehabilitation robot and its motion simulation and dynamics analysis

    Get PDF
    Objective: A new wearable upper limb rehabilitation robot is designed to address the disadvantages of the current desktop upper limb rehabilitation robot, which is bulky and inconvenient to move, and the rationality of the design is verified through the analysis of its motion characteristics and the calculation of joint moments. Methods: Firstly, according to the principle of modular design, the overall structure was designed. Secondly, the SOILDWORKS is used for three-dimensional modeling, and the SOILDWORKS Motion is used to simulate the elbow flexion/extension movement, shoulder flexion/extension movement and shoulder-elbow joint linkage movement of the robot. Finally, the dynamic equation of the system is established based on Lagrange method, and the change curve of the joint torque of the manipulator is calculated by MATLAB software. Results: The simulation results confirmed that the motion simulation curves of shoulder joint, elbow joint and wrist joint were smooth. The dynamic analysis confirmed that the joint torque variation curve was smooth and the maximum joint torque was less than the rated torque of the motor after deceleration. Conclusion: The design of wearable upper limb rehabilitation robot is reasonable, which lays a theoretical foundation for the subsequent research on upper limb rehabilitation robot

    Analysis of the Influence of Parameters of a Spraying System Designed for UAV Application on the Spraying Quality Based on Box–Behnken Response Surface Method

    No full text
    With the development of precision agriculture (PA), low-altitude and low-volume spraying based on unmanned aerial vehicles (UAVs) is playing an increasingly important role in the control of crop diseases, pests, and weeds. However, the aerial spraying quality and droplet drift are affected by many factors, some of which are controllable (e.g., flight and spraying parameters) and some of which are not (e.g., environmental parameters). In order to study the influence of spraying parameters on the UAV-based spraying performance, we propose a UAV-compatible spraying system and a customized experimental platform in this work. Through single-factor test and Box–Behnken response surface methods, four influencing factors, namely spraying height, flow rate, distance between nozzles, and pulse width modulation (PWM) duty cycle, were studied under indoor conditions. Variance analysis and multiple quadratic regression fitting were performed on the test data by using Design-Expert 8.0.5B software, and quadratic polynomial regression models of effective spraying width, droplet coverage density, coefficient of variation, and droplet coverage rate were established. Based on the Z-score standardization, a mathematical model of the comprehensive score with four factors was established to evaluate the spraying quality and predict optimal spraying parameters. Test results indicate that the effect intensity of four influencing factors from strong to weak is PWM duty cycle, flow rate, distance between nozzles, and spraying height, and their optimal values are 98.65%, 1.74 L/min, 1.0 m, and 1.60 m, respectively. Additionally, verification experimental results demonstrate that the deviation between the predicted comprehensive score and the actual value was less than 6%. This paper can provide a reference for the design and optimization of UAV spraying systems

    Physiological parameters analysis of transfemoral amputees with different prosthetic knees

    No full text
    Physiological parameters analysis allows for a precise quantification of energy expenditure of transfemoral amputees with different prosthetic knees. Comparative physiological parameters analysis that indicate the functional characteristics of knee joints is essential to the choice of transfemoral amputee. The aim of this study was to propose a microprocessor-controlled prosthetic knee (i-KNEE) and conducted physiological parameters (energy cost, gait efficiency and relative exercise intensity) comparison of transfemoral amputees with C-leg, Rheo Knee and Mauch under different walking speeds. Methodsː A microprocessor-controlled prosthetic knee with hydraulic damper (i-KNEE) was developed. A two-factor repeated measurement experiment design was used. Each subject was instructed to accept the same treatments. The two factors were type of prosthetic knees (the i-KNEE, the C-Leg, the Rheo Knee and the Mauch) and speed (0.5, 0.7, 0.9, 1.1, 1.3 m/s). The energy cost, gait efficiency and relative exercise intensity of ten transfemoral amputees were measured. Resultsː For all the prosthetic knees, the energy cost increased along with walking speed. There was no significant difference between three microprocessor-controlled prosthetic knees in energy cost. The gait efficiency of Mauch was always less than or equal to other three microprocessor-controlled prosthetic knees in specific walking speed. The relative exercise intensity increased with speed for all the prosthetic knees. More effort was needed for the transfemoral amputees with Mauch than other three microprocessorcontrolled prosthetic knees in the same walking speed. Conclusionsː The use of the microprocessor-controlled knee joints resulted in reduced energy cost, improved gait efficiency and smaller relative exercise intensity

    Analysis of the Influence of Parameters of a Spraying System Designed for UAV Application on the Spraying Quality Based on Box–Behnken Response Surface Method

    No full text
    With the development of precision agriculture (PA), low-altitude and low-volume spraying based on unmanned aerial vehicles (UAVs) is playing an increasingly important role in the control of crop diseases, pests, and weeds. However, the aerial spraying quality and droplet drift are affected by many factors, some of which are controllable (e.g., flight and spraying parameters) and some of which are not (e.g., environmental parameters). In order to study the influence of spraying parameters on the UAV-based spraying performance, we propose a UAV-compatible spraying system and a customized experimental platform in this work. Through single-factor test and Box–Behnken response surface methods, four influencing factors, namely spraying height, flow rate, distance between nozzles, and pulse width modulation (PWM) duty cycle, were studied under indoor conditions. Variance analysis and multiple quadratic regression fitting were performed on the test data by using Design-Expert 8.0.5B software, and quadratic polynomial regression models of effective spraying width, droplet coverage density, coefficient of variation, and droplet coverage rate were established. Based on the Z-score standardization, a mathematical model of the comprehensive score with four factors was established to evaluate the spraying quality and predict optimal spraying parameters. Test results indicate that the effect intensity of four influencing factors from strong to weak is PWM duty cycle, flow rate, distance between nozzles, and spraying height, and their optimal values are 98.65%, 1.74 L/min, 1.0 m, and 1.60 m, respectively. Additionally, verification experimental results demonstrate that the deviation between the predicted comprehensive score and the actual value was less than 6%. This paper can provide a reference for the design and optimization of UAV spraying systems

    Maximum Swing Flexion or Gait Symmetry: A Comparative Evaluation of Control Targets on Metabolic Energy Expenditure of Amputee Using Intelligent Prosthetic Knee

    No full text
    Background. The metabolic energy expenditure (MEE) was the most important assessment standard of intelligent prosthetic knee (IPK). Maximum swing flexion (MSF) angle and gait symmetry (GS) were two control targets representing different developing directions for IPK. However, the few comparisons based on MEE assessment between the MSF and GS limited the development of the IPK design. Objectives. The aim of the present work was to find out the MEE difference of amputees using IPK with control targets of MSF and GS and determine which target was more suitable for the control of IPK based on the MEE assessment. Methods. The crossover trial was designed. Six unilateral transfemoral amputees participated in the study. The amputees were assessed when wearing the IPK with different control targets, namely, the maximum swing flexion angle and gait symmetry. The oxygen consumption analysis during walking at different speeds on a treadmill was carried out. Results. All subjects showed increased oxygen consumption as walking speed increased. However, no statistically significant differences were found in oxygen consumption for different control targets. The ANOVA test showed that the overall effects of the control targets of the prosthetic knee on oxygen consumption were not significant across all walking speeds. Conclusions. The control targets of MSF and GS showed no significant differences on MEE in above-knee amputees using IPK. From perspective of amputee’s metabolic costs, either maximum swing flexion or gait symmetry could be suitable control target for the IPK

    Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking

    No full text
    How to improve the walking efficiency while ensuring the wearability is an important issue of lower limb exoskeletons. Active devices can provide greater forces, while the passive devices have advantage in weight. We presented a multi-joint exoskeleton with active hip extension assistance and passive ankle plantarflexion assistance in this work. An admittance controller based on a feedforward model was proposed to track the desired active force of the hip extension. An underfoot clutch mechanism was adapted to realize the passive ankle plantarflexion assistance. To assess the efficacy of the multi-joint exoskeleton in assisting walking, we conducted comprehensive experiments to evaluate the force tracking performance, lower limb muscle activities and metabolic cost. The results demonstrated that: (i) The average tracking error of the peak hip extension assistance force from three subjects was less than 3%. (ii) The reductions of normalized root-mean-square EMG in the lateral soleus, medial soleus and gluteus maximus of eight subjects achieved 15.33%, 11.11%, and 3.74%, respectively. (iii) The average metabolic cost of six subjects was reduced by 10.41% under exoskeleton on (EO) condition comparing to the condition of walking with no exoskeleton (NE). This work proved that the concept of the multi-joint exoskeleton with active-passive assistance can improve the walking efficiency

    Development and Evaluation of a Rehabilitation Wheelchair with Multiposture Transformation and Smart Control

    No full text
    Stroke and other neurological disorders have an effect on mobility which has a significant impact on independence and quality of life. The core rehabilitation requirements for patients with lower limb motor dysfunction are gait training, restand, and mobility. In this work, we introduce a newly developed multifunctional wheelchair that we call “ReChair” and evaluated its performance preliminarily. ReChair seamlessly integrates the mobility, gait training, and multiposture transformation. ReChair driving and multiposture transformation are done using the voice, button, and mobile terminal control. This work describes the functional requirements, mechanical structure, and control system and the overall evaluation of ReChair including the kinematic simulation of the multiposture transformation and passive lower limb rehabilitation training to quantitatively verify the motion capability of ReChair, the voice control system evaluation that shows how the voice recognition system is suitable for home environment, the sensorless speed detection test results that indicate how the wheel speeds measured by sensorless method are appropriate for travelling control, and the passive and balance training test results that show how the lower limb rehabilitation training in daily life by ReChair is convenient. Finally, the experimental results show that ReChair meets the patients’ requirements and has practical significance. It is cost-effective, easy to use, and supports multiple control modes to adapt to different rehabilitation phases

    Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance

    No full text
    Walking on different terrains leads to different biomechanics, which motivates the development of exoskeletons for assisting on walking according to the type of a terrain. The design of a lightweight soft exoskeleton that simultaneously assists multiple joints in the lower limb is presented in this paper. It is used to assist both hip and knee joints in a single system, the assistance force is directly applied to the hip joint flexion and the knee joint extension, while indirectly to the hip extension also. Based on the biological torque of human walking at three different slopes, a novel strategy is developed to improve the performance of assistance. A parameter optimal iterative learning control (POILC) method is introduced to reduce the error generated due to the difference between the wearing position and the biological features of the different wearers. In order to obtain the metabolic rate, three subjects walked on a treadmill, for 10 min on each terrain, at a speed of 4 km/h under both conditions of wearing and not wearing the soft exoskeleton. Results showed that the metabolic rate was decreased with the increasing slope of the terrain. The reductions in the net metabolic rate in the experiments on the downhill, flat ground, and uphill were, respectively, 9.86%, 12.48%, and 22.08% compared to the condition of not wearing the soft exoskeleton, where their corresponding absolute values were 0.28 W/kg, 0.72 W/kg, and 1.60 W/kg

    A Portable Waist-Loaded Soft Exosuit for Hip Flexion Assistance with Running

    No full text
    The soft exosuit is an emerging robotics, which has been proven to considerably reduce the metabolic consumption of human walking and running. However, compared to walking, relatively few soft exosuits have been studied for running. Many soft exosuits used for running are worn on the back and with a heavy weight load, which may cause instability while running and potentially increase metabolic consumption. Therefore, reducing the weight of the whole soft exosuit system as much as possible and keeping the soft exosuit close to the center of gravity, may improve running stability and further reduce metabolic consumption. In this paper, a portable waist-loaded soft exosuit, the weight of which is almost entirely concentrated at the waist, is shown to assist hip flexion during running, and justifies choosing to assist hip flexion while running. As indicated by the experiments of motion flexibility, wearing the waist-loaded soft exosuit can assist in performing many common and complex motions. The metabolic consumption experiments proved that the portable waist-loaded soft exosuit reduces the metabolic consumption rate of wearers when jogging on the treadmill at 6 km per hour by 7.79% compared with locomotion without the exosuit. Additionally, at the running speed of 8 km per hour, using the waist-loaded soft exosuit can reduce metabolic consumption rate by 4.74%. Similarly, at the running speed of 10 km per hour, it also can be reduced by 6.12%. It is demonstrated that assisting hip flexion for running is also a reasonable method, and wearing the waist-loaded soft exosuit can keep human motion flexibility and reduce metabolic consumption
    corecore